Apr. 18th, 2013

thedeemon: (office)
Когда живешь в тропиках, часть года солнце обходит тебя с юга, часть года оно проходит днем севернее, а два раза в год оно проходит прямо у тебя над головой. Мои примитивные тригонометрические рассчеты говорят, что весной над моей головой оно проходит в районе 15 апреля. Кстати, тайский новый год отмечается как раз в середине апреля; видимо, к этому замечательному астрономическому событию и привязан. На днях было пасмурно, а сегодня вот удалось поймать момент:



Медведевского времени тут нет, поэтому астрономический полдень здесь бывает около 12:20. Ребенок согласился предоставить для опытов свою технику:

Read more... )
thedeemon: (office)
В классической логике есть закон исключения третьего, гласящий, что для любого утверждения А справедливо A | -A, т.е. либо оно верно, либо ложно. Однако это очень смелое утверждение, его можно трактовать так, что любое утверждение разрешимо (decidable), что тоже довольно нагло, и вообще герр Гёдель хмурится. Интуиционисткая логика высказываний и с ней конструктивная математика и прочая теория типов ведут себя скромнее, и такого смелого утверждения не делают. Но зато в них доказуемо вот такое:
--(A | -A)
Давайте его докажем, используя тот же Идрис, хотя ровно так же док-во записывается на Хаскеле. Отрицание определено как импликация в абсурд, т.е. отрицание утверждения А это функция, которая из доказательства А производит абсурд (_|_). Тогда наше утверждение записывается так:

((А | (A -> _|_) -> _|_) -> _|_

В теории типов в синтаксисе Идриса оно становится типом функции:

M : ((Either A (A -> _|_)) -> _|_) -> _|_

А конструктивным его доказательством служит тело этой функции. На выходе она должна произвести абсурд, а на входе у нее тоже функция, такого вот типа:

f : (Either A (A -> _|_)) -> _|_

Нам нужно, используя ее одну, произвести _|_. На вход она принимает либо А, либо -А. Взять значение типа А нам неоткуда, значит нужна функция типа A -> _|_. Как ее построить? Сделать лямбду, которая принимает значение А, и скармливает его f, а она уже произведет _|_. Имея такую функцию типа A -> _|_, ее можно опять же скормить f, и тогда получить _|_ "из ничего". Выглядит это так:
  M f = f (Right g) where
    g a = f (Left a)

Вот так, используя только переданную на вход f, скармливая ей использующую ее же функцию, можно произвести _|_ и так получить конструктивное доказательство --(A | -A). Что это значит? Что хоть мы в интуиционизме и конструктивизме и не утверждаем, что для всякого утверждения А верно (A | -A), мы однако со всей уверенностью его активно не_отрицаем. Дословно: считаем, что было бы абсурдным считать его ложным. Так и живем.

Profile

thedeemon: (Default)
Dmitry Popov

July 2025

S M T W T F S
  12345
6789101112
13141516171819
20212223242526
27282930 31  

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Aug. 20th, 2025 08:31 pm
Powered by Dreamwidth Studios